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The mean first exit time is logarithmically equivalent to the exponential of the 
smallest total free energy barrier separating metastable from stable states for a 
general class of discontinuous Markov processes in the thermodynamic limit. 
This asymptotic principle of minimum relative free energy difference constitutes 
a generalization of the corresponding entropy principle to systems in thermal 
contact with their environment and formalizes the results of a number of previous 
authors. The overwhelmingly most probable path of exit, in the thermodynamic 
limit, is the mirror image in time of the causal path. Along the anticausal path 
the free energy is an increasing function of time and hence does not provide 
any criterion of evolution. The kinetic mean-field model of a ferromagnetic serves 
for illustration. 

1. I N T R O D U C T I O N  

Cram6r ' s  (1938) p ionee r ing  inves t igat ion into large dev ia t ions  o f  sums 
of  i n d e p e n d e n t  r a n d o m  var iables  f rom thei r  mean  has recent ly  been  genera l -  
ized to large devia t ions  for  famil ies  o f  r a n d o m  processes  by  Wentze l l  (1976) 
and  Fre id l in  and  Wentze l l  (1984). Asympto t i c s  o f  events that  have ex t remely  
smal l  p robab i l i t i e s  will  never theless  d o m i n a t e  over  events which  are much  
more  p r o b a b l e  in the long run. F rom a phys ica l  po in t  o f  view this has  been  
recogn ized  for  a long t ime beginning  with  the  desc r ip t ion  o f  long- l ived  
metas tab le  states ar is ing in s econd-o rde r  phase  t rans i t ions  as deve loped  in 
the  essent ia l ly  equiva len t  theor ies  of  Cur ie  and  Weiss  of  spon t aneous  
magne t i za t ion  and  Brags  and  Wil l iams  o f  the  o r d e r - d i s o r d e r  t rans i t ion  in 
b ina ry  al loys.  In  fact,  K r a m e r s '  (1940) p r o b l e m  of  the escape  o f  a Brownian  
par t ic le  over  a po ten t i a l  ba r r i e r  is essent ia l ly  o f  this  nature .  A n d  it is more  
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than a mere coincidence that the same exponential factor involving the 
height of the free energy barrier separating the metastable from the stable 
states should be found in Kramers'  expression for the asymptotic probability 
flow, Becker and D6ring's (1935) calculation for the relaxation rate of  a 
metastable state in the droplet model (Frenkel, 1946) of condensation, and 
in the relaxation time for metastable states in the mean-field model of  a 
ferromagnet (Griffiths et al., 1966). In this paper, we shall establish that 
rough asymptotic estimates (i.e., up to a logarithmic equivalence) predict 
that the mean exit time from a metastable state in the thermodynamic 
( N ~  oo) limit is logarithmically equivalent to the total free energy barrier 
for a class of  locally divisible, discontinuous Markov processes which are 
generated by jumplike perturbations. Moreover, we shall show that the path 
of maximum likelihood for the exit from a metastable state, in the thermo- 
dynamic limit on finite time intervals, is the mirror image in time of  the 
causal path, or ~ path, for processes satisfying detailed balance 
and are characterized by the principle of least dissipation of energy. 

The problem is related to the limit behavior of the stationary distribu- 
tion. It is well known that if there is only one stationary state, the invariant 
measure converges weakly to a measure concentrated on this state (Wentzell, 
1976). If  two or more stable stationary states exist, then the asymptotics 
depend upon the nature of  the fluctuations. For discontinuous, jumplike 
processes we will again obtain the probability of unlikely events in the form 
of  sums of factors of the form e x p [ - N ~ ( ~ ) ] ,  where ~ a )  is an action 
functional (Wentzell, 1976) of  a smooth path ~. As N-~oo, it is only the 
smallest ~(e~) which becomes important and the path will be seen to be 
related to the mirror image in time of the deterministic path (Lavenda and 
Santamato, 1982; Lavenda, 1985a). However, the form of the action func- 
tional will differ from the Onsager-Machlup functional (Onsager and 
Machlup, 1953) for diffusion processes. 

The general results obtained by Cram6r for large deviations for sums 
of independent variables are based on the assumption that there exist finite 
exponential moments of  the form E{e'~X}, where x is a random variable 
and for sufficiently small a. The generalization to stochastic processes 
consists in replacing the random variable x by a stochastic process x, which, 
provided it has fixed rates of transitions, will turnout to be Poisson dis- 
tributed. This we show by using the cluster method (Kikuchi, 1960) for 
deriving the probability distribution where a will turn out to be the Lagrange 
multiplier for the constraint that the transitions must conserve probability. 
As usual the Lagrange multiplier has a physical interpretation and we shall 
see that it is related to the intensity of the random fluctuations and, not 
unexpectedly, the causal path is obtained when it vanishes. This is one path 
of maximum likelihood--albeit  the absolutely most probable pa th- -but  
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there may be other maximum likelihood paths for other "critical" values 
of the Lagrange multiplier (Lavenda and Cardella, 1985). 

Cramrr introduced exponential factors of the type e ~x into the theory 
of associated random walks with defective distributions (Feller, 1971). These 
factors were used to transform the defective distribution ~ into a proper 
distribution ~ # =  e~X~ of the "associated" random walk, meaning that 
~_~ e~X~{dx} = 1. Whether such an associated distribution exists depends 
on whether this integral equation has real roots. In the case where the 
random events are replaced by stochastic processes, the critical root of this 
equation was shown to be  related to the anticausal path (Lavenda and 
Cardella, 1985). If such a path exists, which implies the property of detailed 
balance, then the critical Lagrange multiplier will turn out to be the gradient 
of the free energy. In this paper we show that it is the principle of minimum 
relative difference in free energy which is the criterion of stochastic exit for 
metastable states thereby establishing the generality of previous results 
(Kramers, 1940; Becker and Drring, 1935; Griffiths et al., 1966). And since 
we are dealing with rough limit theorems, where equivalence means logarith- 
mic equivalence, we have no hope of obtaining the preexponential factors 
in the expressions for the mean exit and relaxation times. Yet, we share 
Freidlin and Wentzell's (1984) opinion that there are more interesting 
consequences which can be derived from rough theorems on large deviations 
than "sharp"  theorems, which are valid up to an equivalence or better. 
Here we have an explicit case in which a rough limit theorem, for large 
deviations in a fairly general class of discontinuous Markov processes, is 
used to establish a criterion of stochastic exit. Namely, the principle of 
minimum relative free energy difference is a criterion of stochastic exit in 
systems which can exchange thermal energy with their environment and 
generalizes our previously derived principle of minimum relative entropy 
difference, valid for isolated processes (Lavenda and Santamato, 1982; 
Lavenda, 1985a). Furthermore, we are able to show that the class of 
maximum probability paths, consisting of the causal and anticausal paths, 
are characterized by the Rayleigh-Onsager principle of least dissipation of 
energy (Lavenda, 1978). Along all other paths, in the thermodynamic limit, 
the dissipation is greater than the rate of change of the free energy. 

In Section 2 we derive an expression for the maximum probability 
distribution of a general, nonlinear one-step process in the thermodynamic 
limit and offer a physical interpretation of the so-called "step-operator" 
(van Kampen, 1981) in the master equation by relating it to the Lagrange 
multiplier appearing in the cluster method (Kikuchi, 1960). Probabilitistic 
estimates for large deviations and criteria for determining paths of maximum 
likelihood are given in Section 3. The problem of stochastic exit from the 
domain of attraction of the metastable state in the kinetic Weiss-Ising model 
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of  spontaneous magnetization in the phase transition from paramagnetism 
to ferromagnetism (Kac, 1968) serves for illustration in Section 4. Finally, 
in Section 5 we consider the weak noise limit, thereby obtaining the diffusion 
approximation. Paths of maximum likelihood are also shown to correspond 
to the minimum rate at which energy is being dissipated. 

2. THE CLUSTER M E T H O D  SOLUTION AND INTERPRETATION 
O F  THE MASTER EQUATION FOR ONE-STEP PROCESSES 

In this section, we derive a general expression for the maximum 
probability of  a class of  locally infinitely divisible, discontinuous Markov 
processes in the thermodynamic limit. This will provide a physical interpre- 
tation of the master equation for a "one-step" process, usually written as 
(van Kampen, 1981) 

d/ dt ~3(n, t) = [ ( ~ - 1 _  1)g(n)+  (@ - 1)r(n)]~g(n, t) (1) 

The probability per unit time that, being in state n, a jump occurs to n - 1 
is r(n), while g(n) is the transition probability per unit time for a jump to 
n + l .  The "step operator" @ acts on continuous functions [(n)  in the 
following way (van Kampen, 1981): 

~ [ (n )  = f(n + 1) and ~ -if(n) = f(n - 1) (2) 

A solution to the Master equation (1) can be derived from the cluster 
method (Kikuchi, 1960) by considering a system of N states where N is a 
large number. Since the probabilities for upward and downward transitions 
are independent of  one another, we can consider their distributions 
individually. Concerning downward transitions, the system, in a small time 
interval At, may either remain in the state n with probability [1 - Or(n) At] 
or it may make a transition to n - 1 with probability Or(n) At, where Or(n) 
is the microscopic transition probability which can depend on the state of 
the system. The "path"  probability that out of n (= Ny) events, these will 
happen NP1 and NP2 times, respectively, is given by the multinomial 
expression: 

~r{Pi(At)}=[(Ny)!/(NP~)!(SP2)!][1-Or(n) At]NPl[Or(n) At] Ne2 (3) 

where Pi(At) are the path parameters for the individual events that occur 
in the time interval At. In a similar manner, the path probability distribution 
for upward transitions is given by 

~g{P~(At)} = IN(1 -y)!/(NP3)!(NP4)!][Og(n) At]NP3[1 - Og(rl) At] NP4 (4) 

which gives the probability that two independent events with a priori 
probabilities Og(n) At and [1 - 0g(n) At] will happen exactly NP3 and NP4 
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times, respectively. Since upward and downward transitions are indepen- 
dent, the total path probability ~{Pi(At)} will be the product of (3) and 
(4) whose logarithm is 

( 1 / N )  In ~{Pi(At)} = y In y + (1 - y )  ln(1 - y) - ~ i  P~ In P~ 

+ P1 ln[1 - 0r(y) At] + P2 In 0r(y) At 

+P31nOg(y) At+P41n[1-Og(y)At] (5) 

provided N is large enough so as to justify the use of Stirling's formula. 
In the thermodynamic limit as N-> ~ ,  the path of maximum likelihood 

is obtained by maximizing (5) with respect to the path parameters {P~(At)} 
subject to the constraint that the probability be conserved. At time t, we have 

y( t )=PI+P2 and 1-y ( t )=Pa+P4 (6) 

while at time t+At, 

y ( t+At )=PI+P3 and 1 -y ( t+At )=P4+P2  (7) 

since Y~ P~ = 1. Subtracting (6) from (7) gives the finite difference equation: 

y( t + A t ) -  y( t ) -  Pa + P2=O (8) 

which is the constraint underwhich (5) is to be maximized. Note that the 
independent path parameters are P2 and P3, while P~ and P4 are dependent 
variables through (6) and (7). Multiplying (8) by the Lagrange multiplier 

and adding it to (5), we vary the path parameters for given fixed initial, 
y(t) ,  and final, y( t+At) ,  states. We then obtain 

P~ = P1 e-~O,(Y) At+ o(At) (9) 

and 

P*3 = P~ e+~O~(Y) At + o( At) (10) 

Introducing the path parameter expressions (9) and (10) into (5) with 
constraint (8), we get 

In ~*{y(t) ,  y( t+ At)} = {r(y)(e -~ - 1)+ g(y)(e  +~ - 1)} At 

- a [ y ( t + A t ) - y ( t ) ] + o ( A t )  (11) 

subject to given final and initial states. Comparing the time derivative of 
(11) with the Master equation (1), we identify the macroscopic transition 
probabilities as 

r(y) = NyOr(y) (12) 

and 

g(y) = N(1 -y)Og(y) (13) 
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with the step operator replaced by e-% The probability ~*{y(t) ,  y ( t  + At)} 
is the maximum of the path probability, appearing in (5), subject to fixed 
endpoints of transition. 

In fact, the master equation (1) can be interpreted as the equation of 
motion for the joint probability moment generating function of  a bivariate 
Poisson distribution. Let us define 

1~( o~ ) = E { e aN[y(t+at)-y(t)J} (14) 

where the mathematical expectation stands for 

|  = E e " U - k ) p [ N y ( t + A t )  =J; g(Y)  A t ] p i N y ( t )  = k; r(y)  At] (15) 
j,k 

Since the p's are Poisson distributions with parameters g(y )  At  and r(y)  At  
we obtain 

(~(ot)----- e ~(~'y) at (16) 

The second characteristic function or Hamiltonian is 

~ ( a ,  y )  = g ( y ) ( e  +~ - 1) + r (y ) ( e  -~ - 1) (17) 

Expanding ~ in a power series in a gives 

~ ( a ,  y)  = • ( h k ( y ) / k ! )  a k (18) 
k 

where the coefficient hk depends on the moments of  the distribution and is 
known as the semi-invariant of order k (Feller, 1971). In the next section, 
we show that for certain values of the Lagrange multiplier--which is not a 
mere parameter in the theory as in the definition of the moment generating 
funct ion-- the distribution (11) will transform into well-known forms related 
to maximum likelihoods of  transition. 

3. LARGE D E V I A T I O N S  A N D  CRITERIA FOR P A T H S  OF 
MAXIMUM LIKELIHOOD 

The Hamiltonian de fned  by (17) is a convex function and positive 
semidefinite. To this function, the Young-Fenchel transformation assigns 
the function ~(/3, y) defined by 

Sg(/3, y) = sup [aft - ~ ( a ,  y)] (19) 
t x  

where the Lagrangian ~ belongs to the same class as the Hamiltonian. The 
conjugate variable fl is defined as 

/3 = a ~ / a ~  (20)  
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and provided the solution a = a(/3) exists, the Lagrangian is determined 
by the Young-Fenchel transform (19). Furthermore, the equality Y((0, y) = 
0 implies that 5r y) is nonnegative which vanishes when/3 coincides with 
the deterministic drift. 

Suppose that the expectation 

fo {[fo l) ~(c~) dt = ( l / N )  In Ex exp N c~ dx (21) 

is finite on [0, T] for all ~ in some interval ]a]-< & This says that the 
characteristic function, obtained by replacing real ~ by in, is analytic in 
the neighborhood of the origin. Based on an analogy with the method of 
associated distributions (Feller, 1971), we associate a new probability 
measure P#(dx) with the original one P(dx) according to 

P#(dx)=exp{NIoT[adx-Yg(eQdt]}P(dx) (22) 

The idea of using such a change of measures is due to Cramer (1938). With 
respect to the original probability measure P(dx), the probability of any 
event 91 is 

P(91) = exp - N  [a dx- N(a) dt] P#(dx) (23) 

Suppose that we are interested in a partizular event for which x~ does not 
differ by more than ~ > 0 from some smooth function o~, on the entire interval 
[0, r ] ,  namely, 

91 = {oS<Upr Ix, -~, ,  < ,~ } (24) 

Then writing (23) as 

f E;o ] P(91) = exp - U  a d(x-ei) P#(dx) e x p [ - N ~ r ( ~ ) ]  (25) 

where ~T(~)  is the action 

io ~T(O) := 5fE(~t, ~,)] dt (26) 

Freidlin and Wentzell (1984) estimate the expectation in (25) using the 
Kolmogorov and Chebyshev inequalities. They establish the lower bound  

P(oSUPTIXt--.at[< 3)--> exp{--N[@T(O') + T] } (27) 

for any 3' > 0. 
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According to expressions ( l l ) ,  (17), and (19) the maximum probability 
will be determined when the action ~ r ( ~ )  achieves its infimum. Since in 
general 

La(/3, y) >- a/3 - ~ ( a ,  y) (28) 

and both 5r and Y( are nonnegative, then the infimum of the action (26) 
must be determined by the condition (Lavenda and Santamato, 1982; 
Freidlin and Wentzell, 1984): 

Y((oT) = 0 (29) 

which defines a class of critical values d of the Lagrange multiplier. 
Clearly, ~ =0  satisfies condition (29); this corresponds to the causal 

path. The Lagrange multiplier can therefore be related to the intensity of 
the random fluctuations. In addition to the extremum value |  0, 
corresponding to the causal path ~*, there will be an additional critical 
value of the Lagrange multipler for systems manifesting detailed balance. 
In multidimensional random processes, detailed balance results when the 
circulatory probability current vavdshes (Ito, 1984, and Section 5). 

Let us consider the time interval [ T~, 7"2] and allow T1-~-oo thereby 
giving the system a sufficient amount o f  time to evolve to within any 
arbitrarily small neighborhood of the equilibrium state. The equilibrium 
state O is enclosed in an arbitrary domain l~ with a smooth boundary 0fL 
There it will remain for an overwhelming portion of its time. Yet, on account 
of the random fluctuations, there will always be a probability for the system 
to be found at a finite distance from the equilibrium state and we want to 
determine the maximum probability for such a spontaneous fluctuation to 
o c c u r .  

In the thermodynamic limit, the probability of this unlikely event 
occurring is e x p [ - N  rain ~3(O, y)], where 

23(0, y) ---inf{~r,,r2(er ~r  ~ A,~r  = y ;  -~<-- 7"1< T2 < oo} (30) 

subject to the condition that the system was in some arbitrarily small 
neighborhood A of the equilibrium state at some distant time in the past. 
The critical value of the Lagrange multiplier is determined by condition 
(29) and this must also satisfy Hamilton's equation of motion [replacing/3 
by ~,, cf. equation (20)] 

B~ = (a~ /0a) (a* ,  o'~) (31) 

with the final condition ar~ = y. Since detailed balance holds, the maximum 
likelihood path er will be the mirror image in time of the causal path ~* 
(Kikuchi, 1961; Lavenda and Cardella, 1985). The infimum of the action 
(30) is achieved along this extremal. For the critical value of the Lagrange 
multiplier oJ, the Hamiltonian vanishes and the Lagrangian reduces to 

La(er B*) = a*~* >- 0 (32) 
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Evaluating the time integral of the Lagrangian along the extremal path ~ 
we obtain a difference in a function of state which implies that the critical 
value of the Lagrange multiplier be the derivative of a scalar function, viz., 

~t = 029(ect)/o~ (33) 

The action along the anticausal path is the difference in a function of state: 

r,,r2(O t ) = 2~;(OT~) --~[~(~TI) (34) 

The expected first exit time Ex{~a} from a domain 12 with a smooth 
boundary 012, enclosing a metastable state O, with any initial condition 
x e  12, can be used as an asymptotic measure of the persistency of the 
metastable state. This is especially true if the interval [ T1, T2] is not specified 
in advance. In general, this calculation is seldom feasible. However, in the 
thermodynamic limit only the principal term of this expression is necessary. 
Using the strong Markov property, Freidlin and Wentzell (1984) showthat  
Ex{Ta} is logarithmically equivalent to 

exp[N(nfin[29(y)]-29(O))} (35) 

in the thermodynamic limit. In other words, 

lira ( l / N )  In Ex{ra} = min[29(y) - 2 9 ( 0 ) ]  (36) 
N ~ o o  y 

The expected first exit time can be regarded as the relaxation time from 
metastable to stable states; the time spent outside of 12 is of order 1 since 
the system can evolve without the aid of fluctuations. In particular if O 
belongs to the interval (~1, ~2) which are relative maxima of 29 then the 
expected first exit time is logarithmically equivalent to (see also Labkovskii, 
1972) 

exp[N{min[29(O~), 29(j1~2) ] --29(0)}] (37) 

thereby providing a criterion where the first exit is most likely to occur. 
Furthermore, the asymptotic probability flow out of the domain of attraction 
of O is logarithmically equivalent to the inverse of (35). 

4. THE MEAN-FIELD MODEL OF A FERROMAGNET 

The kinetic Weiss-Ising model (Griffiths et al., 1966; Suzuki and Kubo, 
1968; Kubo et al., 1973) will serve to illustrate the general criteria of the 
previous section. Consider a system of N Ising spins o-i = • placed in an 
external magnetic field H with a coupling strength J > 0. Suppose that there 
are 
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spins pointing "up." The microscopic transition probabilities per unit time, 
Or(n) and 0g(n), are given by the exponential Boltzmann factors (Griffiths 
et al., 1966): 

Or(n) = exp{-(1/2 T)[ U ( n  - 1) - U(n)]} (39) 

and 

0g(n) = exp{ - (1/2T)[ U ( n  + 1) - U(n)]} (40) 

where T is the temperature, in energy units, and U ( n )  is the internal energy 
of the system: 

U ( n )  = - J ( 2 n  - N ) 2 / 2 N - / z 0 H ( Z n  - N) (41) 

Assuming a quasicontinuous approach (Griffiths et al., 1966), we define the 
average magnetization per unit spin, 

x:= (2n - N ) / N  (42) 

The macroscopic transition probabilities (12) and (13) then become 

r (x )  = (1/2)N(1 + x) exp[(1/T)u'(x)]  (43) 

and 

where 

g ( x )  = (1/2)N(1 - x )  exp[ - (1 /T)u ' (x ) ]  (44) 

u (x)  = - ( J / 2 ) x  2 - t ioHx  

is the internal energy per spin and u ' (x )  = d u / d x  is the energy required for 
flipping a spin. 

Instead of using the cluster method of Section 2 to derive the expression 
for the maximum probability, it is simpler to write the moment generating 
function as 

g6(a) = E { e  -2"z'~'} = E{e -2"Nx} = E { e  -2"" e 2"(iv-")} 

or more explicitly as 

g6(a)  = Y~ et-2'~O-k)lp[n = j ;  r A t ] p [ N -  n = k; g At] (45) 
j,k 

where the p's are Poisson distributions with parameters r At and g At. The 
factor of 2 arises from the proper normalization of the distribution [cf. 
(58) below]. The closed-form expression for the moment generating func- 
tion is therefore (16) with the Hamiltonian given by 

~ ( a , x ) = ( N / 2 ) [ ( l + x )  e - ~  eOX+h)(e2"--l)] (46) 

The conjugate variable of the Lagrange multiplier, (20), is 

/3 = N{(1 - x )  e tjx+h+2'd - (1 + x) e -L/x+h+2~]} (47) 
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where 

h = I z o N H / T ,  j = N J / T  (48) 

represent, respectively, the external magnetic field and molecular field scaled 
by the thermal energy T. A Legendre transform on the Hamiltonian can be 
performed so long as 

0 2 ~ / O a 2 = 2 N { ( 1 - x )  e~X+h+2'~l+(l+x) e-Ux+h+2'~]}>O (49) 

implying a functional dependence between the conjugate variables. 
For the critical value of the Lagrange multiplier, a*  = 0, (47) reduces 

to the causal equation of motion of the mean field: 

2" = 2[sinh(jx* + h) - x* cosh(jx* + h)] (50) 

A small and positive h gives the stationary state configuration shown in 
Figure 1 for j > 1 in the ferromagnetic region. The metastable stationary 
state x,. is separated from the stable state x, by an unstable stationary state 
x.. Any initial disturbance of the system to the right of  xu will approach 
x .  whereas it will approach x,, for any initial disturbance to the left of  that 
state. For a small external field, the relaxation time is 

"~, : o r u  - 1)-'1 (51) 

to both metastable and stationary states, while the transition from the 
metastable to stable stationary state will occur over a longer time scale, as 
we now show. 

The paths of  maximum likelihood are given by condition (29). In 
addition to the absolutely most probable path, which is the solution to the 
causal mean field equation (50), there is another path of maximum likelihood 
which is characterized by the critical value: 

a* = (1/2) In [(1 + x~)/(1 -x~ ) ]  - (jx~+ h) (52) 

Fig. 1. The stationary state configuration for J > l and a small positive field h. 
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of the Lagrange multiplier. The equation of  motion of  this maximum 
likelihood path  is the mirror image in time of  the causal path (50), implying 
that the system satisfies detailed balance. For both the causal, x*, and 
anticausal, x,*, paths, criterion (49) is 

0 2 ~ / 0 ~  2 = 4N{cosh(jxt + h) - xr sinh(jx, + h)} > 0. (53) 

A solution x~ exists in both neighborhoods of the metastable and stable 
states so long as it does not cross x,. Since the process manifests detailed 
balance, (52) is the derivative of  a scalar potential and hence 

( d / dt)~(x~) = (O~2~(x~)/Ox)~c t 

= ~(x*t, ~*,) + ~(02B(x~)/Ox, x~) (54) 

where according to (29), the second term vanishes. The first term is positive 
since 5f(x,/3) -> 0 and vanishes only when/3 = 2*. The scalar potential 2~(x[) 
increases with increasing t. 

Consequently, 

I? min[~(xu)  - ~(x~)]  = {(1/2) ln[(1 + x ) / ( 1  - x ) ] - U x + h ] }  dx (55) 

is the criterion which determines from which of the two states exit will be 
made, namely, the metastable state xm. After integration, we find that ~ is 
simply T -1 times the Helmholtz free energy per spin, f, viz., 

~ ( n )  = (n/ N)  l n ( n / N )  + [ ( N -  n)/ N] l n [ ( g -  n)/ N] + u(n)/  T 

= - s(n) + u ( n ) / T  = f ( n ) / T  (56) 

where u(n) and s(n) are the internal energy and entropy per spin. Since 
2~ decreases for decreasing t, the Helmholtz free energy increases along the 
anticausal path and consequently does not provide any thermodynamic criterion 
of evolution along this path. This form of the motion lies beyond the domain 
of validity of  classical thermodynamics.  

The form of the free energy curve is shown in Figure 2 for j > 1 and 
a small, positive external field. The fact that 

f ( x )  - f(x~) = (T /2 )  ln[r(x)/g(x)] dx > 0 (57) 

for both x > xi (r > g) and x < xi (r < g), where x, is either one of the two 
stationary states x,, or xs means they are both stable in the deterministic 
sense. However,  since the two wells of  f are not of  equal depth, random 
fluctuations will cause a "flow" in the probabili ty from one side to the other. 
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Fig. 2. The free energy curve for j > 1 and a small positive field h. 
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Criterion (55), for the preferential tendency of stochastic exit from the 
domain of attraction of metastable state, will be referred to as the principle 
of rninimimum relative free energy difference for stochastic exit. It generalizes 
the corresponding entropy principle, valid for isolated systems, to systems 
in thermal contact with their environment (Lavenda and Santamato, 1982; 
Lavenda, 1985a). For N sufficiently large, so as to justify the use of Stirling's 
formula, the probability of finding n spins "up"  is 

P(n)  = Z I exp [ -N2~(n ) ]  

= Z  ~ [ N ! / n ? ( N - n ) ! ] e x p [ - U ( n ) / T ]  (58) 

where 

is the partition function. 
The expected first exit time from the domain of attraction of the 

metastable state is logarithmically equivalent to 

e x p { ( N / T ) [ f ( x , )  - f ( x , , )  ]} (60) 

or the total the free energy barrier (N  times the free energy barrier per spin 
and unit temperature). This asymptotic formula, for large N, is the same 
as Kramers' (1940) result, for the probability current from one side to the 
other in the escape of a Brownian particle over a potential barrier, apart 
from a preexponential factor. This factor cannot be obtained from rough 
limit theorems on large deviations since they hold only up to a iogarithmic 
equivalence (Wentzell, 1976; Freidlin and Wentzell, 1984)~ 
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If another stable stationary state were to lie to the left to xm, separated 
by an unstable point x~,, then the process would leave the domain of 
attraction of xm toward the left as N~oo  provided f ( x ' ) < f ( x u ) .  In the 
event that f ( x ' ) - - - f ( x u ) ,  which occurs for a vanishing external magnetic 
field, the problem of determining where the first expected exit will take 
place remains open. 

5. MAXIMUM LIKELIHOOD PATHS AND LEAST DISSIPATION 
O F  E N E R G Y  

The paths of maximum likelihood may be characterized in terms of 
the principle of least dissipation of energy (Lavenda, 1978). Along the 
causal path, the rate of "dissipation" of free energy is 

d / d t f ( x * )  = ( T / 2 ) [ g ( x * )  - r(x*)] l n [ r ( x * ) / g ( x * ) ]  <- 0 (61) 

which cannot increase while along the anticausal path, 

d / d t f ( x * t )  = (T /2 ) [ r (x* t )  - g(xt*)] ln[r(x*t ) /g(x~)]  >- 0 (62) 

the free energy cannot decrease when detailed balance holds. For small 
values of the Lagrange multiplier or a weak noise intensity, we may show 
that both (61) and (62) are the minimum rates of dissipation of energy for 
the decay and growth of fluctuations, respectively. 

For small noise intensities, the Lagrangian is given in the Onsager- 
Machlup form (Onsager and Machlup, 1953; Lavenda and Santamato, 
1982): 

~(x,, xt) = (1/2){~t - [g(x t )  - r (x t ) ] }2 / [g(x t )  q- r(xt)] >-- 0 (63) 

Expanding the quadratic form, we obtain 

.O( Yct) + ~ ( x t )  >- - :r - g ( x , ) ] / [ g ( x , )  + r(xt)  ] 

= - (1 /T)d /d t f (x , )  (64) 

where we have identified the Rayleigh-Onsager dissipation function as 
(Lavenda, 1978) 

2JO(~t) = [g(xt)+ r(xt)]-l.ic 2 (65) 

and 

2~(xt) = [g(x t )  + r ( x t ) ] - l [ g ( x t )  - r(ht)] 2 (66) 

is known as the "generating" function (Landau and Lifshitz, 1959; 
Lavenda, 1985a). In the derivation of (64), we have used the fact that for 
small values of the Lagrange multiplier, (1/2) l n [ r ( x , ) / g ( x t ) ]  
[r(x,)-g(xt)] / [g(xt)+ r(x~)]. The criterion for paths of maximum likeli- 
hood, (29), '~ now given by the dissipation balance condition (Lavenda 
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and Santamato, 1982; Lavenda, 1985a): 

t~ (~ , )  - ~ ( s  (67)  

Along the causal path, the Lagrangian vanishes and (64) reduces to the 
equality 

2 TD(2*)  = - d / d t f ( x * )  > 0 (68) 

Expressed in words, (68) states that the minimum rate of dissipation of 
energy is given by the negative rate of change of the free energy per unit 
temperature. Along the causal path the free energy decreases in time and 
provides a thermodynamic criterion of evolution. 

Similarly, the semidefinite quadratic form 

~LP(xt, -xt)  = (1/2){~t + [g(xt) - r(x,)]}Z/[g(xt) + r(xt)] >-- 0 (69) 

which is the mirror image in time of the Lagrangian (63), can be written 
as the thermodynamic inequality: 

t~(2t) + ~ ( x , )  >- )r - g(xt)  ] / [g(x t )  + r(xt)] 

= (1/T) d / d t f ( x , )  (70) 

Along the anticausal path, which satisfies the dissipation balance condition 
(67), we obtain 

2t9"(2,*) = [r (x~)-  g(x*,)]Z/[g(x*,)+ r(x~)] 

= (1/T) d/d t f (x* t )  >- 0 (71) 

showing again that this path of maximum likelihood is characterized by a 
minimum rate at which energy is being dissipated. 

In the case of m random processes with m > 1, the probability current 
density does not have to vanish inside the region under consideration even 
though it may satisfy zero boundary conditions (Stratonovich, 1963). The 
presence of a rotational flow will destroy detailed balancing of the individual 
processes (Lavenda, 1985b). The probability flow around a closed curve ~t 
will have the asymptotic form (Ikeda and Watanabe, 1981) 

exp[ - N~(r  (72) 

for 0--- t <- T, where T is a period of the motion and Oo = Or. The circulation 
is defined as 

fo ~(~) := {~(r d,) - 5r - d r ) }  dt (73)  

The relation between the integrand of (73) and the critical vector o~*= 
is 

5f(~, B) - ~(O, - d )  = 2 Y, a~*di (74) 
i 
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Therefore only in the event that the critical Lagrange multiplier is the 
gradient of a scalar function (e.g., the free energy) will the circulation (73) 
vanish. In the present case the integrand in (73) can be evaluated with the 
aid of (63) and (69). We then obtain 

~0 T ~(O) = 2 {[r(~t)-g(Ot)]/[r(Ot)+g(Ot)]} dot (75) 

where we note that the integrand is the diffusion limit approximation for 
the critical value of  the Lagrange multiplier, (52). 
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